

Amicro:bit E O E Crib Notes

microbit

n

このドキュメントは、 表示 - 非営利 (CC BY-NC 2.0 JP)に 基づきご利用ください。

 「NPO法人NEXTDAY」の クレジット表示が必要です。
 ・営利目的での利用はできません。 v02-1911_03版

NPO法人NEXTDAY 2019

n:bit

ファミリー

v02-1911_03版

- ・基板上のセンサー(光センサーor 人感センサー)と micro:bitで - 計測と制御 -
- ・プログラムで出力電流をスイッチのようにFETで 外部機器をOn-Off 制御 モーターやLED を制御
 - 同時にFET のOn-Off 状態を基板上のLED で確認
- ・FET 外部機器の電気をOn-Off ができるスイッチ
- 明るさを計測する光センサ(Cds) もしくは ・センサー 人などの接近を検知する人感センサ を装備
 - ○みのむしクリップで簡単に接続 ○ネジ止めで確実な接続

スピーカ <mark>ー</mark> 電源スイッチ	すぐにサウンド機能が使える 使う時だけON 電池も節約
.ED	身近な信号機の動きを簡単に再現 センサー情報をLED で視覚的に記
ドタン電池	基板裏面に電池ホルダー付き (入手しやすいボタン電池) micro:bit に電源供給 持ち運べて、単体で便利に使える
ネジ止め	micro:bit とn:bit をネジ止めして

- 接触不良を防止

n:bit Docking - micro:bit拡張ボード - Base day.ja micro:bitとn:bit基板を ソケットで簡単接続・取り外し ・ブロックにローマ字で文字を指定して micro; bit に プログラムを書き込むと、音声合成された声で おしゃべりしてくれる

♥現 プログラムによる制御例 ◆micro:bit のA ボタン、B ボタンを押すと 言葉を話すプログラム

- A ボタン: 「こんにちは」 B ボタン: 「そだねー」
- ◆センサーで状態を計測して声で状況を話す ボードを揺らすと「ゆれてる~」 温度センサで計測:「あたたかいです」 温度センサの数値を読み上げる :「いまのおんどは25どです」

ー シリアル通信 1行書き出す (ma'ikurobi'xtuto ki'do- si'masit;

・micro:bit の本来のサウンド機能を n:bit ぼいすのスピーカから流す

はじめてのmicro:bit

1. micro-bitってなに?

特徴

・ブロック型とスクリプト型(JavaScript/Python)

プログラムを作成する方法は2種類あります。

小学生はブロック型で、中学生はブロック型とJavaScriptの併用、高校生はPythonと 同じハードウェアーを、学ぶ内容に合わせて適切な言語を選択した活用ができます。

シュミレータ

作成したプログラムを本体にダウンロード(転送)しなくてもシュミレーターを使ってテストできます。 プログラムが思い通りに動作しているのか、正しく動作しているかなどを確認できます。 思いついたアイディアを試すことにも使えます。

ユニークな**センサーを内臓**

押しボタン、光センサー温度センサー、加速度センサー、コンパス(磁気センサー)などの データ入力機能を標準で装備しています。それぞれに専用ブロックが用意され簡単に活用することがで きます。

多彩な活用(創造性)

入力と出力の機能がこの1台の中に組み込まれ、外部機器との接続も容易です。micro:bitの特徴を学ぶ ことで様々なアイディア(発想)をプログラムを使って表現することができます。

通信機能

複数のmicro:bitで無線通信ができます。情報(センサーデータ)を送受信でき、コミュニケーションや 操作したりできます。

<u>ハードウェア機能</u>

詳しくは https://microbit.org/ja/guide/features/

◆電源供給

供給方法は3つあり、それぞれの方法によって外部機器が 使用できる電流に制限があります。

① microUSBコネクター	•	90 m A
-----------------	---	--------

- ②電池ソケット : **3A**未満(供給側の制限)
- ③外部接続端子(3V/GND) : 3A未満(供給側の制限)

micro:bitの電源供給についての仕様

http://tech.microbit.org/hardware/powersupply/

◆センサ

- ・**光**センサ
- ・温度センサ
- ・動きセンサ 加速度計/コンパス
- ・ボタン

・プログラムをつくるアプリ

JavaScriptブロックエディタ >ブラウザ版 : インターネット接続が必須 >Windows10アプリ版 : インター接続がなくても使える

v02-1911_03版

はじめてのmicro:bit

・シミュレーター

micro:bit本体がなくてもプログラムを 動作させて確認することができます。 使用した命令(ブロック)によって 自動的に変化します。 マウスで操作したり、センサーの数値を 変化させることができます。

64

はじめてのmicro:bit

2. 使って (動かして) みよう

・新規にプログラミングする時 ①新しいプロジェクト

Comicro:bit 谷ホーム 🔩 共有		• ブロック			aScrip					6	2	٥		M	icros	oft
	検索	Q	最初	ぞけ			ずつ	Ł								
	基本			_				-	-							
B	⊙ 入力					-										
	♀ 音楽															
	C LED															
	.山 無線															
0 0 0 0	C ループ															
0 1 2 3V GND	☆ 論理															
	■ 変数															
	■ 計算															
~ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	▼ 高度なブ	ロック														
							040	275	27	12	- 1962	5	5	2	æ	
🛓 ダウンロード	題名未設定	1	B		dig	3		ñ					5	٩	•	0

・ツールボックス

プログラムブロックが機能別に整理されています。 それぞれ色でも判別しやすくなっています。

v02-1911_03版

◆プログラミングの7ステップ

1. どのように動かす(表示)するかを考える 2. 動き(動作)を細かく分解して、手順を書く 3. 一つひとつの動きに関連するブロックを見つける 4. ブロックを並べる、組み合わせる 5. シミュレーターで動作を確認する 6. プログラムを名前を付けて保存する 7. micro:bitに転送する

ツールボックス >計算

アイコンを表示しよう

起動したら25個のLEDに「ハート」と「小さいハート」アイコンが 交互に表示するプログラムを作ろう

ツールボックス >基本

.....

•

•

.....

•

.....

ツールボックス > 基本 にあるツールでつくります

ツールボックス > 音楽
音を鳴らす 高さ (Hz) 真ん中のド 長さ 1 ▼ 拍

ボタンAB と 文字 ボタンAとボタンBを押したときに それぞれ異なる文字が表示するプログラムを作ろう

動き(動作)を分解

RIGHT

LEFT +

ツールボックス >入力

ツールボックス >基本

例) A を押したら 「A」と表示 B を押したら **[B**]と表示

ツールボックス >入力

加速度の単位

重力と同じ大きさの力が加わる状況のことを1G 1秒間にどれだけ速度が増すか

1Gの場合「1秒で約4.9メートル」 2Gの場合「1秒で約9.8メートル」 3Gの場合「1秒で約14.7メートル」

?スペースシャトル

自由落下における距離と時間と速さの関係 https://mathwords.net/jiyurakka

月の重力が地球の1/6になる理由 https://mathwords.net/tukijuryoku

宇宙速度

https://mathwords.net/utyusokudo

グループを **同じ番号**にします。 グループ番号を表示

recievedString をドラッグして 文字列を表示に入れる

グループを 同じ番号にします。

グループ番号を表示

recievedNumber をドラッグして 数字を表示に入れる

micro:bitでコミュニケーション

伝えてみよう!

Step8

じゃんけん

Let's play rock-paper-scissors

- ・どうやって ・____を決める
- micro:bitの____をどう使うか?

Step1~7で使ったおもなブロック

- ・<u>振って</u>じゃんけんする
- ・ボタンを押してりセット

サンプル-1 (数字でじゃんけん)

じゃんけんゲーム

サンプル-1b (効果音をつけてみよう)

サンプル-3 (変数を使ってみよう)

じゃんけんゲーム

サンプル-4

Step-2 アイコンを表示しよう

step-3 LED ペースメーカー

Step-4 ボタンAB と 文字 Step-5 信号機をつくろう

Step-6 押しボタン信号機をつくろう

- ・この教材は、保護者等の適切な指導のもとでの利用が必要です。
- ・部品の取り付けや配線を間違うと、部品等の破損・発熱・発煙・発火等の恐れがあります。
- ・金属や配線がむき出しです。

取り扱いを誤るとショートして、発火・感電・ケガの恐れがあります。

- ・水に濡らさないでください。
- ・部品が熱を持ったり、異臭がしたら、直ちに使用をやめてください。
- ・部品の取り付けや配線は、必ず 電源を切って行ってください。
- ・教材を使用しない時は、必ず電池を取り外して保管してください。

NPO法人 **NEXTDAY** は 子供たちの学びを支援しています

お問い合わせは nextday@ict.skr.jp

